Siemens – Siemens and Compass Datacenters Sign Multi-Year Custom Electrical Solution Agreement, Critical to Achieving Aggressive Scaling Targets for Data Center Construction

SIEMENS

  • Siemens’ innovative modular medium-voltage power skid solution enables faster construction of Compass data center facilities
  • The agreement helps Compass Datacenters meet rocketing demand from cloud and hyperscale customers, while also lowering the cost of critical power systems
  • First deployment projected for second half of 2025 at Compass’ campus near Chicago

 

Compass Datacenters, which designs and constructs data center campuses for some of the world’s largest technology companies, has signed a multi-year capacity agreement with Siemens to supply a custom modular medium-voltage skid solution. The solution consolidates the capabilities of multiple electrical components, including medium-voltage switchgear and transformers, into a single integrated unit which will enable Compass to build faster and at a lower total cost. The agreement guarantees delivery of up to 1,500 units over the next five years.

Compass Datacenters Campus

Compass Datacenters’ hyperscale campuses rely on modular buildings and a standard kit of parts for efficient, sustainable and cost-effective data center delivery. Siemens has developed a modular medium-voltage skid solution to further accelerate the company’s speed to market.

 

This innovative design, developed by Siemens and Compass, dramatically reduces the time required to install critical power systems, enabling faster data center delivery during an era of unprecedented demand. Driven by the advancement of artificial intelligence (AI), continued progression of cloud computing, and the explosive growth of global data, the data center market is projected to grow by double digits through 2030. 

Siemens will deliver prefabricated modular units that include maintenance-free 8DJH 36 gas-insulated arc-resistant medium-voltage switchgear and transformers. Conserving resources, the design of the switchgear reduces the need for maintenance and extends the service life of the equipment, while the compact design increases energy efficiency in operations. The custom skid solution creates a simplified and standardized design for easy deployment across a variety of environments.

“Tools like artificial intelligence and cloud services provide great opportunities as well as some challenges in terms of the scale of growth,” says Brian Dula, Region CEO of the Electrification and Automation business at Siemens Smart Infrastructure USA. “At Siemens we are ‘productizing’ the critical components necessary so companies like Compass can build new data centers faster while reducing on-site work and costs. It is the prefabrication, modular, and fungible design of our technology that provides the bedrock needed to meet the demand the industry is calling for.” 

 

Compass builds data center campuses for the world’s largest hyperscalers, with sites throughout the globe. Heavy reliance on off-site manufacturing and modular means of construction provides Compass with the unique ability to deliver large-scale data centers in as few as nine months, which is critical in this era of high demand.

“This solution is a powerful example of what this partnership will deliver to Compass customers in the years to come,” says Jared Day, President and Chief Financial Officer, Compass Datacenters. “The 8DJH 36 solution delivers major efficiency and sustainability advantages that align with Compass’ strategic anchors and accelerates our timeline for projects.”

 

The first installation of this solution will be at Compass’ new data center campus being developed on the former site of Sears’ headquarters in the Chicago area and is slated to break ground in the second half of 2025. Siemens’ factory-certified service personnel will offer commissioning and installation support to ensure seamless integration of the modular solution across all projects.

 

SourceSiemens

EMR Analysis

More information on Siemens: See full profile on EMR Executive Services

More information on Dr. Roland Busch (President and Chief Executive Officer, Siemens AG): See full profile on EMR Executive Services

More information on Siemens Smart Infrastructure (SI): https://new.siemens.com/global/en/company/about/businesses/smart-infrastructure.html + Siemens Smart Infrastructure (SI) is shaping the market for intelligent, adaptive infrastructure for today and the future. It addresses the pressing challenges of urbanization and climate change by connecting energy systems, buildings, and industries. SI provides customers with a comprehensive end-to-end portfolio from a single source – with products, systems, solutions, and services from the point of power generation all the way to consumption. With an increasingly digitalized ecosystem, it helps customers thrive and communities progress while contributing toward protecting the planet. Siemens Smart Infrastructure has its global headquarters in Zug, Switzerland. As of September 30, 2024, the business had around 78,500 employees worldwide

More information on Matthias Rebellius (Member of the Managing Board and Chief Executive Officer, Siemens Smart Infrastructure (SI), Siemens AG + Member of the Supervisory Board, Siemens Energy AG): See the full profile on EMR Executive Services

More information on Brian Dula (Region Chief Executive Officer, Electrification and Automation Business, Siemens Smart Infrastructure USA, Siemens Smart Infrastructure (SI), Siemens AG): See the full profile on EMR Executive Services

More information on the 8DJH 36 Solution by Siemens: https://www.siemens.com/global/en/products/energy/medium-voltage/systems/8djh36.html + 8DJH 36 switchgear is a factory-assembled, type-tested, 3-pole metal-enclosed single-busbar switchgear for indoor installation. 8DJH 36 switchgear is used in public and industrial energy systems of the secondary distribution level.

 

 

More information on Compass Datacenters: http://www.compassdatacenters.com/ + Compass Datacenters, one of Inc. Magazine’s 5000 fastest growing companies, designs and constructs data centers for some of the world’s largest hyperscalers and cloud providers on campuses across the globe. Our corporate culture is predicated on continual improvement and innovation and has enabled us to marry technology with modern manufacturing methods to enhance our ability to consistently deliver our customer’s projects faster, with no sacrifices in quality. Since our inception, our sustainability efforts have encompassed the entire data center from its design to its post-delivery performance, including the efficient use of land, water-free cooling and a focus on Green House Gas reduction in the materials used to build our facilities and in their operation. Compass embraces a long-term perspective with the financial strength of investors Ontario Teachers’ Pension Plan and Brookfield Infrastructure.

More information on Chris Crosby (Chief Executive Officer, Compass Datacenters): https://www.compassdatacenters.com/about/leadership/ + https://www.linkedin.com/in/chris-crosby-3542b71/ 

More information on Jared Day (President and Chief Financial Officer, Compass Datacenters): https://www.compassdatacenters.com/about/leadership/ + https://www.linkedin.com/in/jared-day-a24142/ 

 

 

 

 

 

 

EMR Additional Notes: 

  • Extra Low-Voltage (ELV):
    • Voltage of 50V or less (AC RMS), or 120V or less (ripple-free DC).
  • Low-Voltage (LV):
    • The International Electrotechnical Commission (IEC) defines supply system low voltage as voltage in the range 50–1000 V AC or 120–1500 V DC.
  • Medium-Voltage (MV):
    • Medium-voltage circuit breakers rated between 1 and 35/72 kV.
  • High-Voltage (HV):
    • The International Electrotechnical Commission define high voltage as above 1000 V for alternating current, and at least 1500 V for direct current.
  • Super High-Voltage or Extra High-Voltage (EHV): 
    • Is >300kV.
  • Ultra High-Voltage (UHV): 
    • Is >1.000kV.

 

 

  • Medium-Voltage Transformer Skid:
    • Prefabricated unit substation with power distribution components such as medium voltage, transformer, low voltage switchgear and monitoring gauges on the frame, for installation in a building.

 

 

  • Cloud Computing:
    • Cloud computing is a general term for anything that involves delivering hosted services over the internet. … Cloud computing is a technology that uses the internet for storing and managing data on remote servers and then access data via the internet.
    • Cloud computing is the on-demand availability of computer system resources, especially data storage and computing power, without direct active management by the user. Large clouds often have functions distributed over multiple locations, each location being a data center.
  • Edge Computing:
    • Edge computing is a form of computing that is done on site or near a particular data source, minimizing the need for data to be processed in a remote data center.
    • Edge computing can enable more effective city traffic management. Examples of this include optimising bus frequency given fluctuations in demand, managing the opening and closing of extra lanes, and, in future, managing autonomous car flows.
    • An edge device is any piece of hardware that controls data flow at the boundary between two networks. Edge devices fulfill a variety of roles, depending on what type of device they are, but they essentially serve as network entry — or exit — points.
    • There are five main types of edge computing devices: IoT sensors, smart cameras, uCPE equipment, servers and processors. IoT sensors, smart cameras and uCPE equipment will reside on the customer premises, whereas servers and processors will reside in an edge computing data centre.
    • In service-based industries such as the finance and e-commerce sector, edge computing devices also have roles to play. In this case, a smart phone, laptop, or tablet becomes the edge computing device.
    • Edge Devices:
      • Edge devices encompass a broad range of device types, including sensors, actuators and other endpoints, as well as IoT gateways. Within a local area network (LAN), switches in the access layer — that is, those connecting end-user devices to the aggregation layer — are sometimes called edge switches.
  • Data Centers:
    • A data center is a facility that centralizes an organization’s shared IT operations and equipment for the purposes of storing, processing, and disseminating data and applications. Because they house an organization’s most critical and proprietary assets, data centers are vital to the continuity of daily operations.
  • Hyperscale Data Centers:
    • The clue is in the name: hyperscale data centers are massive facilities built by companies with vast data processing and storage needs. These firms may derive their income directly from the applications or websites the equipment supports, or sell technology management services to third parties.

 

 

  • Switchgears:
    • Broad term that describes a wide variety of switching devices that all fulfill a common need: controlling, protecting, and isolating power systems. This definition can be extended to include devices to regulate and meter a power system, circuit breakers, and similar technology.
    • Switchgear contains fuses, switches, and other power conductors. However, circuit breakers are the most common component found in switchgear.
    • Performs the function of controlling and metering the flow of electrical power in addiction to acting as interrupting and switching devices that protects the equipment from damage arising out of electrical fluctuations.
    • There are three types of switch gears namely LV (Low voltage), MV (Medium voltage) and HV (High voltage) Switchgear.
  • Circuit Breakers:
    • Mechanical electrical switch designed to protect an electrical circuit from damage caused by overcurrent/overload or short circuit. Its basic function is to interrupt current flow after protective relays detect a fault.
    • By definition a circuit breaker is an electrical safety device, a switch that automatically interrupts the current of an overloaded electric circuit, ground faults, or short circuits.
  • Fuses:
    • Single time mechanical circuit interruption in an over-current situation through fusion of a graded electrical conductor. Employed in 30KV to 100KV range.
    • Electrical safety device that operates to provide overcurrent protection of an electrical circuit. Its essential component is a metal wire or strip that melts when too much current flows through it, thereby stopping or interrupting the current.
  • ACB (Air Circuit Breakers): 
    • Uses air as insulating medium.
    • Air circuit breaker is a circuit breaker for the purpose of protecting low voltage circuit, mainly for energizing and cutting off high current
  • VCB (Vacuum Circuit Breakers): 
    • Vacuum is used as the means to protect circuit breakers.
    • Circuit breaker where the arc quenching takes place in a vacuum medium. The operation of switching on and closing of current carrying contacts and interrelated arc interruption takes place in a vacuum chamber in the breaker which is called a vacuum interrupter.
  • AIS (Air Insulated Switchgears):
    • Air is used for insulation in a metal-clad system
    • Secondary power distribution device and medium voltage switchgear that helps redistribute the power of a primary power distributor powered by a high voltage distribution transformer. AIS controls, protects and isolates electrical equipment in power transmission and distribution systems.
  • GIS (Gas Insulated Switchgears): 
    • All working components assembled under SF6 (Sulfur Hexafluoride HV Switchgears) gas-tight casing.
    • Compact metal encapsulated switchgear consisting of high-voltage components such as circuit-breakers and disconnectors, which can be safely operated in confined spaces.
  • OCB (Oil Circuit Breakers): 
    • Vapors a portion of oil to blast a jet of oil through the arc.
    • Circuit breaker which uses insulating oil as an arc quenching medium
  • Hybrid Circuit Breakers:
    • Combines Air-insulated and SF6 Gas-insulated technologies.
  • MCB (Miniature Circuit Breakers): 
    • Employed in domestic households to safeguard against overload. Rated current max. 100 A.
    • Electrical switch that automatically switches off the electrical circuit during an abnormal condition of the network means an overload condition as well as a faulty condition. Nowadays we use an MCB in a low-voltage electrical network instead of a fuse.
    • Circuit breakers have a tripping relay mechanism, while MCB has a tripping release mechanism. Circuit breakers have a high rupturing capacity, but the MCB has a low rupturing capacity. Circuit breakers are used in High Voltage systems, while MCBs are used in Low Voltage systems.
  • RCCB (Residual Current Circuit Breakers): 
    • To safeguard against electrical shock arising out of indirect contact and includes the detection of residual current such as earth leakage.
    • Current sensing device, which can automatically measure and disconnect the circuit whenever a fault occurs in the connected circuit or the current exceeds the rated sensitivity.
  • MCCB (Molded Case Circuit Breakers): 
    • Incorporates insulating material in the form of molded casing within circuit breaker. Rated current up to 2,500 A.
    • MCCB has a higher interrupting capacity, meaning it can handle larger loads than a conventional breaker. Generally, a standard breaker is used for residential and light commercial applications, while an MCCB is suitable for industrial and heavy commercial applications.
  • Disconnectors: 
    • Automatic switching device that offers specific isolating distance on the basis of specific requirements.
    • Disconnectors (also known as Isolators) are devices which are generally operated off-load to provide isolation of main plant items for maintenance, or to isolate faulted equipment from other live equipment.
  • Contactors: 
    • Works alike high-current switching systems but at higher voltage rates. Contactors can however not be utilized as disconnecting switches. Contactors are employed in 30KV to 100KV range.
    • Special type of relay used for switching an electrical circuit on or off.
    • Electrical device that is widely used for switching circuits on and off. As such, electrical contactors form a subcategory of electromagnetic switches known as relays. A relay is an electrically operated switching device that uses an electromagnetic coil to open and close a set of contacts.
  • PTCB eFuse Circuit Breaker:
    • Electronic micro fuse for DIN rail protecting electronically nominal currents below 1A to facilitate the clear detection of faults and supports precise fault localization and fast recovery. Response times are shorter compared to conventional fuse protection and the exact current value can be adjusted at any time
  • RCD (Residual Current Devices): 
    • Sensitive safety device that switches off the electricity within 10 to 50 milliseconds if there is an electrical fault. An RCD is is designed to protect against the risks of electrocution and fire caused by earth faults.
    • The difference between a circuit breaker and an RCD switch is the purpose of a circuit breaker is to protect the electrical systems and wiring in a home while the purpose of an RCD switch is to protect people from electrocution.
  • RCBO (Residual Current Breaker with Over-Current): 
    • RCDs can protect against electric shocks, residual currents, and earth faults. On the other hand, RCBOs can do what RCDs can do and protect a circuit from short circuits and overload. RCBOs are essentially a combination of MCB and RCCB.
    • An RCBO protects electrical equipment from two types of faults; residual current and over current. Residual current, or Earth leakage as it can sometimes be referred to, is when there is a break in the circuit that could be caused by faulty electrical wiring or if the wire is accidentally cut.
  • Ring Main Unit (RMU):
    • Medium voltage, gas-insulated, fully sealed cabinet used to measure, connect, and integrate transformer protection functions with a fixed type breaker. Ring Main Units are safe, reliable, low-maintenance, and easy to replace switchgear.
    • A ring main unit (RMU) is a factory assembled, metal enclosed set of switchgear used at the load connection points of a ring-type distribution network.
  • Load Center – Panel Board – Switch Board – Distribution Cabinet – Distribution Box:
    • A load center is used in residential and light commercial applications to distribute electricity supplied by the utility company throughout the home or building to feed all the branch circuits. Each branch circuit is protected by the circuit breaker housed in the load center.  In the event of a short circuit or an overload on a branch circuit, the circuit breaker will cut the power before any potential property damage or personal injury can occur.
    • A load center provides similar functionality in a power distribution system as a switchboard and a panelboard. As far as UL and the NEC standards are concerned, there is no difference between a panelboard and a load center.
    • However, Panelboards are typically deeper than load centers and can accommodate both bolt-on circuit breakers as well as plug-in breakers, whereas a load center is limited to plug-in breakers.
    • Switchboards are often the typical choice for industrial establishments. These panelboards generally house circuit breakers that can manage and supply electricity for machines with high-voltage demands.
    • Panelboards are only accessible from the front (as mentioned above), but switchboards allow rear access as well.
    • In terms of use, distribution boxes are generally used for households, and distribution cabinets are mostly used for centralized power supply. Distribution boxes and cabinets are complete sets of equipment. Distribution boxes are low-voltage complete sets of equipment. Cabinets have both high and low voltages.
panelboard-loadcenter.jpg
  • Solid-State Circuit Breakers:
    • Solid-state device, electronic device in which electricity flows through solid semiconductor crystals (silicon, gallium arsenide, germanium) rather than through vacuum tubes.
    • The solid-state breaker concept replaces the traditional moving parts of an electromechanical circuit breaker with semiconductors and advanced software algorithms that control the power and can interrupt extreme currents faster than ever before.
  • Pad-mount Switchgear:
    • The pad-mount switchgear is made from the same modular switch and interrupter components as the vault switchgear. This means all components are sealed, submersible and protected, so you don’t have to worry about tracking, animal infestation, corrosion or the effects of condensation inside the enclosure.

 

 

  • Substation:
    • A power station is where the power is generated. A sub station is where power is split apart, distributed and spread further into the grid.A substation is a part of an electrical generation, transmission, and distribution system.
    • Substations contain the specialist equipment that allows the voltage of electricity to be transformed (or ‘switched’). The voltage is stepped up or down through pieces of equipment called transformers, which sit within a substation’s site.
  • Transformers (Distribution Transformers, Power Transformers and Traction Transformers):
    • A distribution transformer is the type of transformer that performs the last voltage transformation in a distribution grid. It converts the voltage used in the transmission lines to one suitable for household and commercial use, typically down to 240 volts.
    • The transformer is classified into three types based on the voltage level produced: Step down, Step up, and an isolation transformer.
    • Transformers changes from high voltage to low voltage, used in homes and businesses. The main function of this is to reduce the voltage to provide isolation between the two windings as primary and secondary. This transformer distributes electricity to remote areas generated from power plants.
    • While transformer stations are linked to high/medium-voltage transmission systems, electrical substations are designed to support and transform lower voltages.
    • Distribution transformers always operate at a load less the rated full load. Power transformers always operate at full load. Distribution transformers are designed to give maximum efficiency at 60 to 70% of the rated load. Power transformers have maximum efficiency at full load.
    • Power Transformers are used in transmission network of higher voltages for step-up and step down application (400 kV, 200 kV, 110 kV, 66 kV, 33kV) and are generally rated above 200MVA.
    • Distribution Transformers are used for lower voltage distribution networks as a means to end user connectivity. (11kV, 6.6 kV, 3.3 kV, 440V, 230V) and are generally rated less than 200 MVA.
    • Traction transformers are special transformers used in railway systems to step down high-voltage AC power from the overhead catenary to the required voltage for the train’s traction system. These transformers are typically medium-frequency transformers with ratings ranging from 25 kVA to 25 MVA.
  • Shunt Reactor:
    • Shunt reactors (SRs) are used in high voltage energy transmission systems to control the voltage during load variations. Depending on the voltage requirement needs, shunt reactors are switched on or off to provide reactive power compensation.
    • A shunt reactor is an absorber of reactive power, thus, increasing the energy efficiency of the system. It is the most compact device commonly used for reactive power compensation in long high-voltage transmission lines and in cable systems. The shunt reactor can be directly connected to the power line or to a tertiary winding of a three-winding transformer. The shunt reactor could be permanently connected or switched via a circuit breaker.
    • Shunt reactor is same as power transformer but it has only one winding per phase as compared to power transformer. Shunt reactors are used to increase the power and energy system efficiency as it absorb & compensate the reactive power in cables and long high voltage transmission lines.
What is Shunt Reactor - Types, Construction & Applications

 

 

  • AI – Artificial Intelligence:
    • https://searchenterpriseai.techtarget.com/definition/AI-Artificial-Intelligence  +
      • Artificial intelligence is the simulation of human intelligence processes by machines, especially computer systems.
      • As the hype around AI has accelerated, vendors have been scrambling to promote how their products and services use AI. Often what they refer to as AI is simply one component of AI, such as machine learning. AI requires a foundation of specialized hardware and software for writing and training machine learning algorithms. No one programming language is synonymous with AI, but well a few, including Python, R and Java, are popular.
      • In general, AI systems work by ingesting large amounts of labeled training data, analyzing the data for correlations and patterns, and using these patterns to make predictions about future states. In this way, a chatbot that is fed examples of text chats can learn to produce lifelike exchanges with people, or an image recognition tool can learn to identify and describe objects in images by reviewing millions of examples.
      • AI programming focuses on three cognitive skills: learning, reasoning and self-correction.
      • What are the 4 types of artificial intelligence?
        • Type 1: Reactive machines. These AI systems have no memory and are task specific. An example is Deep Blue, the IBM chess program that beat Garry Kasparov in the 1990s. Deep Blue can identify pieces on the chessboard and make predictions, but because it has no memory, it cannot use past experiences to inform future ones.
        • Type 2: Limited memory. These AI systems have memory, so they can use past experiences to inform future decisions. Some of the decision-making functions in self-driving cars are designed this way.
        • Type 3: Theory of mind. Theory of mind is a psychology term. When applied to AI, it means that the system would have the social intelligence to understand emotions. This type of AI will be able to infer human intentions and predict behavior, a necessary skill for AI systems to become integral members of human teams.
        • Type 4: Self-awareness. In this category, AI systems have a sense of self, which gives them consciousness. Machines with self-awareness understand their own current state. This type of AI does not yet exist.
      • Machine Learning (ML):
        • Developed to mimic human intelligence, it lets the machines learn independently by ingesting vast amounts of data, statistics formulas and detecting patterns.
        • ML allows software applications to become more accurate at predicting outcomes without being explicitly programmed to do so.
        • ML algorithms use historical data as input to predict new output values.
        • Recommendation engines are a common use case for ML. Other uses include fraud detection, spam filtering, business process automation (BPA) and predictive maintenance.
        • Classical ML is often categorized by how an algorithm learns to become more accurate in its predictions. There are four basic approaches: supervised learning, unsupervised learning, semi-supervised learning and reinforcement learning.
      • Deep Learning (DL):
        • Subset of machine learning, Deep Learning enabled much smarter results than were originally possible with ML. Face recognition is a good example.
        • DL makes use of layers of information processing, each gradually learning more and more complex representations of data. The early layers may learn about colors, the next ones about shapes, the following about combinations of those shapes, and finally actual objects. DL demonstrated a breakthrough in object recognition.
        • DL is currently the most sophisticated AI architecture we have developed.
      • Computer Vision (CV):
        • Computer vision is a field of artificial intelligence that enables computers and systems to derive meaningful information from digital images, videos and other visual inputs — and take actions or make recommendations based on that information.
        • The most well-known case of this today is Google’s Translate, which can take an image of anything — from menus to signboards — and convert it into text that the program then translates into the user’s native language.
      • Machine Vision (MV):
        • Machine Vision is the ability of a computer to see; it employs one or more video cameras, analog-to-digital conversion and digital signal processing. The resulting data goes to a computer or robot controller. Machine Vision is similar in complexity to Voice Recognition.
        • MV uses the latest AI technologies to give industrial equipment the ability to see and analyze tasks in smart manufacturing, quality control, and worker safety.
        • Computer Vision systems can gain valuable information from images, videos, and other visuals, whereas Machine Vision systems rely on the image captured by the system’s camera. Another difference is that Computer Vision systems are commonly used to extract and use as much data as possible about an object.
      • Generative AI (GenAI):
        • Generative AI technology generates outputs based on some kind of input – often a prompt supplied by a person. Some GenAI tools work in one medium, such as turning text inputs into text outputs, for example. With the public release of ChatGPT in late November 2022, the world at large was introduced to an AI app capable of creating text that sounded more authentic and less artificial than any previous generation of computer-crafted text.
Image listing successful generative AI examples explained in further detail below.

 

The evolution of artificial intelligence
types ai apps
ai machine learning deep learning
  • Edge AI Technology:
    • Edge artificial intelligence refers to the deployment of AI algorithms and AI models directly on local edge devices such as sensors or Internet of Things (IoT) devices, which enables real-time data processing and analysis without constant reliance on cloud infrastructure.
    • Simply stated, edge AI, or “AI on the edge“, refers to the combination of edge computing and artificial intelligence to execute machine learning tasks directly on interconnected edge devices. Edge computing allows for data to be stored close to the device location, and AI algorithms enable the data to be processed right on the network edge, with or without an internet connection. This facilitates the processing of data within milliseconds, providing real-time feedback.
    • Self-driving cars, wearable devices, security cameras, and smart home appliances are among the technologies that leverage edge AI capabilities to promptly deliver users with real-time information when it is most essential.
  • Multimodal Intelligence and Agents:
    • Subset of artificial intelligence that integrates information from various modalities, such as text, images, audio, and video, to build more accurate and comprehensive AI models.
    • Multimodal capabilities allows to interact with users in a more natural and intuitive way. It can see, hear and speak, which means that users can provide input and receive responses in a variety of ways.
    • An AI agent is a computational entity designed to act independently. It performs specific tasks autonomously by making decisions based on its environment, inputs, and a predefined goal. What separates an AI agent from an AI model is the ability to act. There are many different kinds of agents such as reactive agents and proactive agents. Agents can also act in fixed and dynamic environments. Additionally, more sophisticated applications of agents involve utilizing agents to handle data in various formats, known as multimodal agents and deploying multiple agents to tackle complex problems.
  • Small Language Models (SLM) and Large Language Models (LLM):
    • Small language models (SLMs) are artificial intelligence (AI) models capable of processing, understanding and generating natural language content. As their name implies, SLMs are smaller in scale and scope than large language models (LLMs).
    • LLM means large language model—a type of machine learning/deep learning model that can perform a variety of natural language processing (NLP) and analysis tasks, including translating, classifying, and generating text; answering questions in a conversational manner; and identifying data patterns.
    • For example, virtual assistants like Siri, Alexa, or Google Assistant use LLMs to process natural language queries and provide useful information or execute tasks such as setting reminders or controlling smart home devices.